Experimental observation of Dirac-like surface states and topological phase transition in Pb(1-x)Sn(x)Te(111) films.
نویسندگان
چکیده
The surface of a topological crystalline insulator (TCI) carries an even number of Dirac cones protected by crystalline symmetry. We epitaxially grew high-quality Pb(1-x)Sn(x)Te(111) films and investigated the TCI phase by in situ angle-resolved photoemission spectroscopy. Pb(1-x)Sn(x)Te(111) films undergo a topological phase transition from a trivial insulator to TCI via increasing the Sn/Pb ratio, accompanied by a crossover from n-type to p-type doping. In addition, a hybridization gap is opened in the surface states when the thickness of the film is reduced to the two-dimensional limit. The work demonstrates an approach to manipulating the topological properties of TCI, which is of importance for future fundamental research and applications based on TCI.
منابع مشابه
Experimental Observation of Dirac-like Surface States and Topological Phase Transition in Pb[subscript 1- x]Sn[subscript x]Te(111) Films
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
متن کاملObservation of a topological crystalline insulator phase and topological phase transition in Pb(1-x)Sn(x)Te.
A topological insulator protected by time-reversal symmetry is realized via spin-orbit interaction-driven band inversion. The topological phase in the Bi(1-x)Sb(x) system is due to an odd number of band inversions. A related spin-orbit system, the Pb(1-x)Sn(x)Te, has long been known to contain an even number of inversions based on band theory. Here we experimentally investigate the possibility ...
متن کاملDirect observation and temperature control of the surface Dirac gap in a topological crystalline insulator
Since the advent of topological insulators hosting Dirac surface states, efforts have been made to gap these states in a controllable way. A new route to accomplish this was opened up by the discovery of topological crystalline insulators where the topological states are protected by crystal symmetries and thus prone to gap formation by structural changes of the lattice. Here we show a temperat...
متن کاملSymmetry breaking and Landau quantization in topological crystalline insulators
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. In the recently discovered topological crystalline insulators SnTe and Pb 1−x Sn x (Te, Se), crystal symmetry and e...
متن کاملDesigning 3D topological insulators by 2D-Xene (X = Ge, Sn) sheet functionalization in GaGeTe-type structures
State-of-the-art theoretical studies anticipate a 2D Dirac system in the ‘‘heavy’’ analogues of graphene, free-standing buckled honeycomb-like Xenes (X = Si, Ge, Sn, Pb, etc.). Herewith we regard a 2D sheet, which structurally and electronically resembles Xenes, in a 3D periodic, rhombohedral structure of layered AXTe (A = Ga, In; X = Ge, Sn) bulk materials. This structural family is predicted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 112 18 شماره
صفحات -
تاریخ انتشار 2014